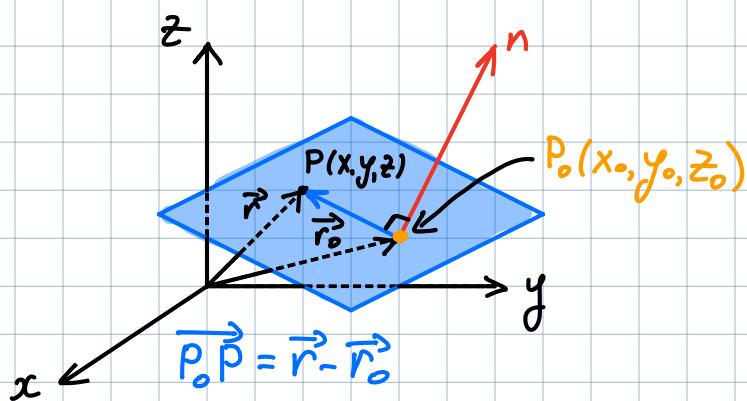


Last time: Planes

- A plane is defined by a point P_0 and an orthogonal vector \vec{n} ("the normal vector")



$$\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$$

vector eq. of the plane

If $\vec{n} = \langle a, b, c \rangle$, $\vec{r} = \langle x, y, z \rangle$, $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle$, then eq. of the plane is

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

- scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $\vec{n} = \langle a, b, c \rangle$

Rmk:

$$ax + by + cz + d = 0$$

- linear equation of the plane

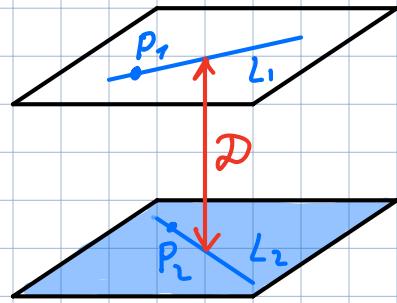
$$d = - (ax_0 + by_0 + cz_0)$$

Ex: Skew lines $L_1: x=1+t, y=-2+3t, z=4-t$

$L_2: x=2s, y=3+s, z=-3+4s$

Find distance between L_1, L_2

Solution:



1) Direction vectors: $\vec{v}_1 = \langle 1, 3, -1 \rangle$
 $\vec{v}_2 = \langle 2, 1, 4 \rangle$

2) Common normal vector to both planes: $\vec{n} = \vec{v}_1 \times \vec{v}_2$

3) Take any point on L_2 (e.g. take $s=0$)
lets call it P_2

4) Plane through P_2 with a normal \vec{n}

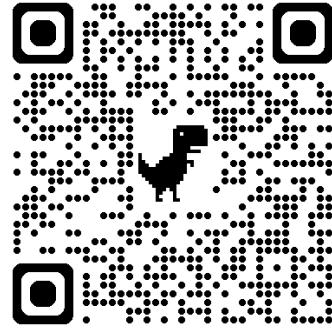
5) Take any point on L_1 (e.g. take $t=0$)
lets call it P_1 . Find distance between P_1 and P_2 .

Lecture notes:

Marianna Russkikh

Lecture 1 Lecture 2 Lecture 3 **Review 1** Lecture 4 Lecture 5 Lecture 6

© 2025 Marianna Russkikh



Dot & cross products review

CANVAS:

FA25-MATH-20550-SS-02

Fall Semester 2025

Home Syllabus Announcements Assignments Modules Grades BNC First Day Course Materials

FA25-MATH-20550-SS-02 Calculus III

Day By Day Schedule Syllabus Class Times Contacts and Office Hours Homework

Video Recordings Tutorial Worksheets Help

Fall Semester 2025

Home Syllabus Announcements Assignments Modules Grades BNC First Day Course Materials

Discussions People Files Pages Outcomes Rubrics Collaborations Quizzes Settings

Chapter 12: Vectors and Geometry of Space

» Introduction
» Lecture 1: Introduction to 3D coordinates & Vectors
» Lecture 2: Dot and Cross Product
» Lecture 3: Lines
» Lecture 4: Planes

Lecture 4 introduces planes and how they interact with lines.

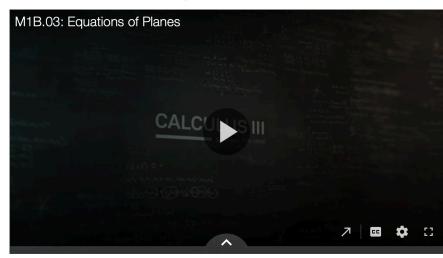
Companion notes: [Lecture 4 Blank.pdf](#)

Companion notes with the solutions to the examples: [Lecture 4.pdf](#)

Video 1 Video 2 Video 3

Equation of a Plane

M1B.03: Equations of Planes



Today: Vector valued functions and space curves

The paths of objects moving through space-like the planes pictured here-can be described by vector functions.

Vector valued functions

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$

Vector (-valued) function: domain \rightarrow range

\nwarrow set of real numbers \nearrow set of vectors

$$t \mapsto \vec{r}(t) = \vec{f}(t)\vec{i} + \vec{g}(t)\vec{j} + \vec{h}(t)\vec{k} \\ = \langle f(t), g(t), h(t) \rangle$$

Rmk: domain = values t for

which $\vec{r}(t)$ is defined.

Ex: $\vec{r}(t) = \langle 1+t, \frac{\sqrt{t}}{1-t}, \ln t \rangle$

$1+t$: defined for $t \in (-\infty, \infty)$

$\frac{\sqrt{t}}{1-t}$: defined for $t \in [0, 1) \cup (1, \infty)$

$\ln t$: defined for $t \in (0, \infty)$

\Rightarrow domain is $t \in (0, 1) \cup (1, \infty)$

$$f(t) = 1+t$$

$$g(t) = \frac{\sqrt{t}}{1-t}$$

$$h(t) = \ln t$$

Limits of vector functions

$$\lim_{t \rightarrow a} \vec{r}(t) = \left\langle \lim_{t \rightarrow a} f(t), \lim_{t \rightarrow a} g(t), \lim_{t \rightarrow a} h(t) \right\rangle$$

provided the limits of the component functions exist

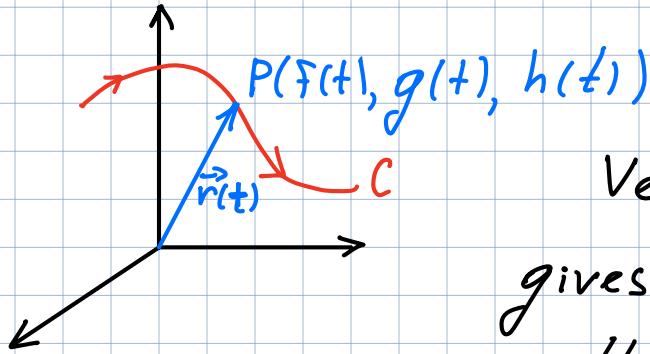
Ex: $\lim_{t \rightarrow 0} \left(\frac{\sin t}{t} \vec{i} + e^t \vec{j} + \frac{t^2 + t}{t} \vec{k} \right) = 1\vec{i} + 1\vec{j} + 1\vec{k} = \langle 1, 1, 1 \rangle$

- $\vec{r}(t)$ is continuous at a if $\lim_{t \rightarrow a} \vec{r}(t) = \vec{r}(a)$

Rmk: $\vec{r}(t)$ is continuous at a $\Leftrightarrow f, g, h$ are all continuous at a.

Space curves

Set of points (x, y, z) with $x = f(t), y = g(t), z = h(t)$,
 $t \in I$ interval - "space curve" C .



given functions
 $x = f(t), y = g(t), z = h(t)$,

parametric equations of C ,
 t -parameter

Vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$
gives a "moving" vector, whose tip traces
the curve C .

Ex: $\vec{r}(t) = \langle 1, t, 2t \rangle$

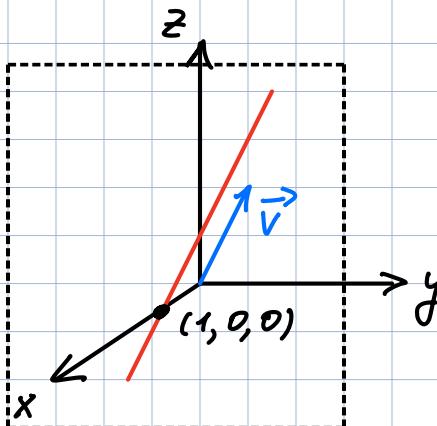
parametric equations:

$$x = 1$$

$$y = t$$

$$z = 2t$$

line through $(1, 0, 0)$ parallel to $\langle 0, 1, 2 \rangle$.



Also

$$\vec{r} = \vec{r}_0 + t \vec{v}$$

- vector eq. of the line

$$\vec{r}_0 = \langle 1, 0, 0 \rangle$$

Ex: $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$ - sketch the curve

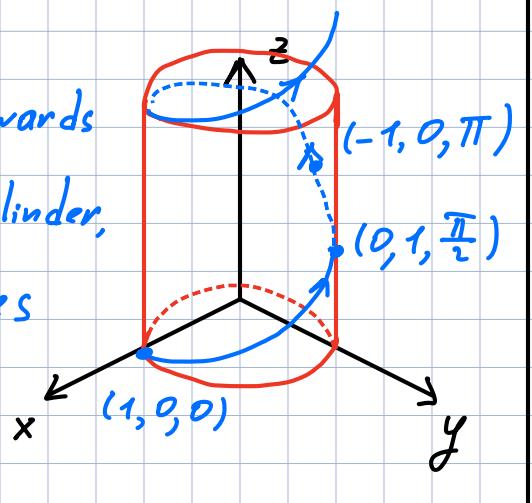
vector eq. of the curve

Sol: parametric eq.: $x = \cos t$, $y = \sin t$, $z = t$

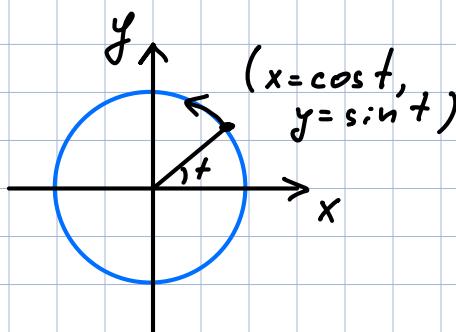
1) $x^2 + y^2 = \cos^2 t + \sin^2 t = 1 \Rightarrow \vec{r}(t)$ is on the cylinder

$$x^2 + y^2 = 1$$

spirals upwards
along the cylinder,
as t increases



2) In xy -plane:



counterclockwise
rotation

Ex: $P(1, 1, 1)$, $Q(1, 2, 3)$. Describe the line segment PQ by a vector eq.

Sol: $\vec{r}(t) = \vec{r}_0 + t(\vec{r}_1 - \vec{r}_0) = \langle 1, 1+t, 1+zt \rangle \quad 0 \leq t \leq 1$

$$\vec{r}_0 = \langle 1, 1, 1 \rangle$$

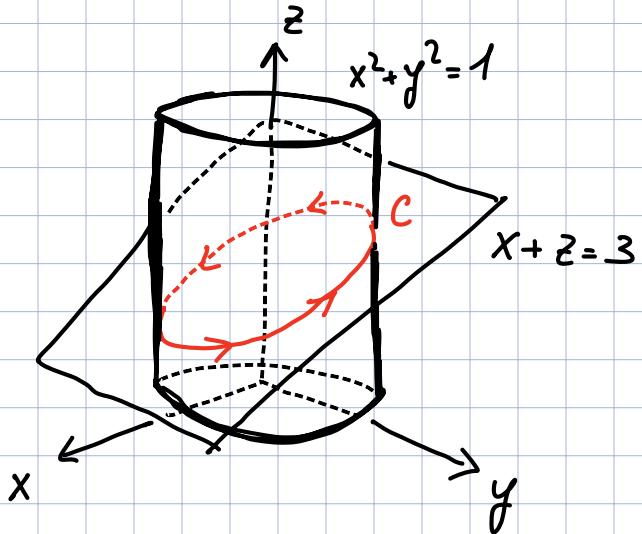
$$\vec{r}_1 = \langle 1, 2, 3 \rangle$$

Ex: Find a vec. eq. for the intersection C of the cylinder $x^2+y^2=1$ and plane $x+z=3$

Sol: 1) projection of C onto xy -plane is the circle $\begin{cases} x^2+y^2=1 \\ z=0 \end{cases}$
 given parametrically by $\begin{cases} x=\cos t \\ y=\sin t \\ z=0 \end{cases}, 0 \leq t \leq 2\pi$

2) From the eq. of the plane $z = 3 - x = 3 - \cos t$

$$\Rightarrow \vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + (3 - \cos t) \vec{k} = \langle \cos t, \sin t, 3 - \cos t \rangle, \quad 0 \leq t \leq 2\pi$$



Ex: Find the intersection of C with the sphere $x^2+y^2+z^2=10$

$$\text{Sol: } \cos^2 t + \sin^2 t + (3 - \cos t)^2 = 10$$

$$1 + 9 - 6 \cos t + \cos^2 t = 10$$

$$\cos t (\cos t - 6) = 0$$

$$\cos t = 0 \quad \rightarrow \quad t = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$

Ex: Describe by vec. eq. intersection C of $z=x^2+y^2$ -paraboloid
and $y=x^2$ -parabolic cylinder

Sol: Set $t=x$ then $y=t^2$ and $z=x^2+y^2=t^2+t^4$
 $\Rightarrow \vec{r}(t)=\langle t, t^2, t^2+t^4 \rangle$